Trapping Rain Water Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example, Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
===============================下面是我的解法======================================= 大概思路是遍历每个节点,找到左边最高边界,找到右边最高边界,然后取这两个边界中最小的和当前高度做差,就是当前的点的蓄水量。每个点蓄水量之和就是总的蓄水量。
a = [0,1,0,2,1,0,1,3,2,1,2,1]
b = [0,0,0,0,0,7,0,0,0,0,0,0]
# https://oj.leetcode.com/problems/trapping-rain-water/
def trap(data_arr)
total_trap = 0
data_arr.each_with_index do |item, index|
left_edge, right_edge = item, item
# find left bigest edge
(0..(index - 1)).reverse_each do |left_index|
left_item = data_arr[left_index]
if left_item > left_edge
left_edge = left_item
end
end
# find right bigest edge
((index + 1)..(data_arr.length - 1)).each do |right_index|
right_item = data_arr[right_index]
if right_item > right_edge
right_edge = right_item
end
end
# this point traped water
increment = left_edge >= right_edge ? right_edge - item : left_edge - item
# puts "index:#{index} left_edge:#{left_edge} right_edge:#{right_edge} increment:#{increment}"
total_trap += increment
end
total_trap
end
p trap(a) == 6 # =》 true
p trap(b) == 0 # =》 true
============================================================================================== 或者有什么办法把代码简化?